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Microorganisms craft a wide range of small molecules from 
modular assembly lines, such as PK synthases (PKSs) and 
NRP synthetases (NRPSs), which are intrinsically capable 

of creating unique molecular architectures. After the discovery of 
penicillin, bioactivity-guided fractionation and screening of micro-
bial cultures has revealed >11,000 PK and NRP products (Fig. 1). 
Genome sequencing efforts are uncovering PKS-NRPS gene clus-
ters at an unprecedented rate, but only a relatively small portion of 
these (~10%) have been associated with known products (Fig. 1). 
This disparity suggests that a number of new gene clusters encode 
known molecules, but many others likely produce valuable new 
natural products1–3.

The initial discovery of the erythromycin gene cluster provided a 
prime example of how Nature uses modular biosynthetic logic to craft 
bioactive molecules4. Knowledge of the biosynthetic origins of NRP 
and PK molecules has been thoroughly confirmed by gene knock-
out studies, which have matched ~568 PK and NRP products to their 
respective gene clusters5. The localized nature of biosynthetic genes 
also expedited rigorous enzymology studies that defined the unifying 
principles and specialized reactions in NRP and PK systems6–8. Now, 
next-generation sequencing is exponentially accelerating the rate of 
gene-cluster discovery, revealing active biosynthetic loci as well as 
‘cryptic’, seemingly silent clusters. Several of these cryptic clusters are 
not entirely silent, and have been shown to possess minimal or con-
ditional activity, yielding low-abundance bioactive products9–12. With 
this in mind, we must now decide how best to focus future efforts to 
maximize the discovery of new compounds. By leveraging both clas-
sical natural-product chemistry and our knowledge of biosynthesis, 
we can now develop cutting-edge bioinformatic algorithms to deter-
mine which gene clusters produce the >11,000 known NRPs and PKs, 
and which will yield highly valuable new molecules.

Natural-product genome mining offers tools to identify clusters, 
but lacks a means to differentiate those encoding known versus 
new products3. Increased computational accuracy that can more 
closely emulate Nature has been illustrated in recent updates to 
AntiSMASH13 and the highly accurate ‘prediction informatics for 

secondary metabolomes’ (PRISM) engine14. Still, predicting natural 
products from gene clusters remains a challenge because of frequent 
deviations in colinearity principles (order of genes and modu-
lar enzymes to products) and difficulty inferring reactions (e.g.,  
regio-chemistry) from genes15,16. For other natural biomolecules 
(e.g., proteins), the genetic code translates effectively, and algo-
rithms such as basic local alignment search tool (BLAST) readily 
define relationships and relatedness17, enabling focused investiga-
tions. Applying these principles to small molecules would provide 
a unique tool to rapidly assess the novelty of downstream natural 
products, allowing efforts to be focused on new gene clusters with 
medical and industrial biosynthetic potential. Here we present 
a pipeline that links gene clusters to known natural products and 
defines clusters encoding new compounds based on a retro-biosyn-
thesis tool (GRAPE) and an alignment algorithm (GARLIC) for PK 
and NRP small molecules (http://www.magarveylab.ca/garlic).

RESULTS
Predicting natural-product building blocks
Molecular studies have provided insight into the biosynthetic trans-
formations and catalysts that promote PK and NRP biosynthesis. 
Advanced bioinformatic algorithms have likewise increased our 
capacity to identify biosynthetic clusters. Previously, we had defined 
a new bio- and chemo-informatic platform, PRISM (http://www.
magarveylab.ca/prism), which uses a catalog of hidden Markov 
models (HMMs)14,18 in an attempt to better catalog PK and NRP 
biosynthetic reactions. Here we provide the predictive capacity of 
PRISM for PK and NRP building blocks across 171 test clusters to 
define its accuracy for proteinogenic amino acids (93% accurate 
across 393 test cases), non-proteinogenic amino acids (94% accurate 
across 115 test cases), and PK acyltransferase (AT) domain substrates 
(74% based on 383 randomly selected AT domains; Supplementary 
Results, Supplementary Table 1a). PRISM also identifies 257 
building blocks added to NRP and PK scaffolds14, including sulfurs, 
hydroxyl functionalities, formyl and methyl groups, halogens (100% 
accuracy across 30 clusters), fatty acyl units (100% for 20 clusters 
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tested) and sugar molecules (64% accuracy of the correct sugar over 
30 clusters)14. In the cases of deoxysugars, PRISM infers the num-
bers of sugars placed on a given PK-NRP scaffold from the num-
ber of associated glycosyltransferases (GTs), and determines their  
identities using annotated sugar genes, facilitating monomer predic-
tion. PRISM detects 5 dicarboxylic acid substrates, 132 fatty acids, 
15 hydroxy acid substrates, 47 amino acids and several unique 
non-assembly line features, including 12 tailoring domains that are 
likewise detected via GRAPE (Supplementary Data Set). PRISM 
can also detect genes associated with minimal PKS, polyketide 
chain length and cyclization of type II polyketides and enedi-
ynes to predict their scaffolds14. For trans-acting acyltransferase  
domain-containing type I PKS, PRISM applies a recursive  
algorithm to insert acyltransferase into the open reading frame to 
form a PKS architecture similar to cis-acyltansferase PKS14. Detailed 
discussion regarding PRISM analysis of type II polyketides,  
enediynes and type I PKS with trans-acting acyltransferase has been 
published previously14.

Retro-biosynthetic analysis of PK and NRP core tailorings
Systematic retro-biosynthesis of microbial PKs and NRPs requires 
a strategy to reverse the various ring patterns, heterocycles and 

other backbone elaborations (Fig. 2 and Supplementary Fig. 1). 
To this end, we developed GRAPE (Fig. 2). GRAPE uses SMILES19 
structures as inputs, and uses protocols from the chemistry devel-
opment toolkit (CDK)20 to identify valences and bonds in order to 
perform theoretical deconstruction of PK and NRP structures. We 
designed the deconstruction processes of GRAPE with a series of 
retro-biosynthetic reactions to handle the exceptional complexity of 
PK and NRP molecules, including well-known structures, such as 
vancomycin, penicillin and erythromycin, as well as heavily tailored 
structures (kendomycin, anthramycin and avermectin) (Fig. 2,  
and Supplementary Tables 3 and 4). By identifying predictable 
moieties and functional groups, GRAPE can leverage our under-
standing of biosynthesis to reverse each reaction and reach the core 
components generated by an assembly-line enzyme.

In addition to backbone generation, amides of peptidic natural 
products are often modified during synthesis, including N-, O- and 
C-methylations, imines, thioesters, esters and heterocycles (oxazoles, 
thiazoles, thiazolines and thiazolidines) (Supplementary Table 1b). 
GRAPE theoretically reverses these modifications and annotates the 
subsequent fragment with the reversed tailoring (Supplementary 
Table 4). Other prospective tailorings occur after scaffold assembly, 
such as β-lactam ring formation, prenylation, halogenation, sulfation,  
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Figure 1 | Historical perspective of microbial polyketide and nonribosomal peptide natural-product discovery and associated genetic information.  
(a) A pipeline created to match unknown gene clusters with known natural products: pRiSM takes in genetic information to infer assembly line monomers 
and tailoring enzymes, and GRApe takes in small molecules to produce analogous information, which can be compared. (b) comparison of natural-product 
discovery with sequencing rates of gene clusters and genomes from 1990 to 2015. the compounds in purple are bacterial natural products. the compounds in 
red are microbial natural products that can be processed in GRApe. the genetic sequences in yellow are nucleotide sequences that are over 100 kb, from the uS 
national center for biotechnology information (ncbi) database. in blue are the number of clusters identified via pRiSM using all nucleotide sequences that are 
over 100 kb, and the predicted products can be processed in GRApe. Matches in green are all known natural products with known biosynthetic clusters.
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epoxidation, hydroxylation, and bi-aryl and disulfide forma-
tion, all of which GRAPE documents (Supplementary Tables 3  
and 4). GRAPE uses maximum common substructure (MCS)21 
matching to identify liberated fragments and monomers by com-
parison with an annotated library of PK and NRP monomer and 
tailoring units, including modified and unmodified amino acids 
(297), singlet and doublet PK fragments (7), acyl adenylating units 
(67), fatty acids (132), uncategorized monomers (69) and sugars 
(71) (Supplementary Figs. 1 and 2). GRAPE also identifies oxygen, 
nitrogen, and carbon-linked hexose and deoxysugars, which are 
subsequently removed and logged for MCS searches. All remaining 
unknown fragments are then scanned with a fatty-acid-determin-
ing algorithm that has two filters. The first filter checks whether the 
fragment has a carboxylic acid and no other elements other than 
carbon or hydrogen for the remainder of the molecule, unless it is 
an oxygen on the γ-carbon. The second filter checks for the presence 
of a linear, nonbranching, saturated chain of at least four carbons.  
If the fragment passes both filters, it is deemed a fatty acid.

Retro-biosynthetic analysis of complex PK and PK-NRP hybrids
After MCS analysis is complete on all of the fragments, GRAPE 
identifies amino acids, acyl adenylating units, fatty acids, sugars and 
biosynthetically uncategorized monomers. Remaining are three  
general groups of fragments, all of which may or may not be 
polyketide-related fragments: ketide-extended hybrids, fatty acyl 
chains and standard polyketides. Remaining fragments that contain  
amine and carboxylic acid groups are potentially ketide unit extended 
hybrids. To analyze those, GRAPE identifies the longest carbon-only 

chain from the α-carbon of the amine to the carboxylate carbon of 
the furthest carboxylic acid (Supplementary Fig. 3). If the carbon 
chain has an odd number of carbons, the ketide-extended amino 
acid is identified as a β-amino acid. The bond between γ-carbon 
and δ-carbon is then theoretically broken and the γ-carbon is con-
verted to a carboxylic acid to create the β-amino acid. If the carbon 
chain has an even number of carbons, the keto-extended amino 
acid is identified as an α-amino acid. The bond between the cor-
responding β-carbon and γ-carbon is then theoretically broken, and 
the β-carbon is converted to a carboxylic acid to create the α-amino 
acid. The amino acid fragment is reanalyzed by MCS to determine 
the exact amino acid, and the remaining polyketide fragment is then 
analyzed for its monomers.

To determine PK monomers, GRAPE reveals the longest carbon-
only chain, starting from a carboxylate carbon, and predicts this 
to be the PK backbone. If the chain contains an even number of  
carbons, the second furthest carbon from the carboxylate carbon is 
selected as the biosynthetic starting β-carbon. In the case of an odd 
number of carbons in a chain, the furthest carbon from the carboxy-
late carbon is selected as the biosynthetic starting β-carbon. In an 
iterative analysis, two carbon atoms from the backbone, marked as β 
and α, are processed at a time until the entire backbone is analyzed. 
The α-carbon chemical environments are used by GRAPE to derive 
the biosynthetic dicarboxylic acid that would have been selected by 
the PKS AT domain in biosynthesis. For instance, if the α-carbon 
has a hydrogen, CH3, OCH3 or CH2CH3, this infers malonate (Mal), 
methylmalonate (MeMal), methoxymalonate or ethylmalonate, 
respectively (Supplementary Fig. 2). Similarly, β-carbon chemical 
environments define the oxidative status of β-ketone. Salient fea-
tures to discern a PK chain from fatty acyl chain are also considered 
after the polyketide prediction is complete. If the majority of the 
β-carbons are fully saturated, the fragment is ambiguously labeled 
as a fatty acid or a polyketide, as its biosynthetic loading modules 
cannot be definitively determined based on structure.

Type I PKs can include complex post-assembly line cyclizations, 
which can occasionally remove the generalized predictability of a  
carboxylate (end carbon) or the start carbon, so predicting the PK 
scaffold is not possible without reverting these post-assembly modi-
fications. Building on established biosynthetic paradigms, GRAPE 
includes a series of retro-biosynthetic operations to process these 
challenging structures (Supplementary Table 3). A number of 
other, more esoteric chemistries are also processed and recorded 
(Supplementary Tables 3 and 4). For instance, ether-containing rings, 
including polyethers such as monensin, are theoretically opened and 
attached to the appropriate atoms depending on which of the car-
bons is a β-carbon, in the case of even-numbered carbon rings. With 
an odd number of carbons, it is not possible to infer which carbon  
had the hydroxyl group and which had the ketone, so both are 
inserted as potential states at that site (Supplementary Table 3).

Having constructed breakage rules that cover a wide spectrum of 
chemistries found in the PK and NRP family, we next tested GRAPE 
on several sample molecules. Outputs of the molecules erythromycin, 
thiocoraline, ML-449, salinosporimide, cephalosporin, penicillin,  
nocardicin, chivosazole A, curacin, bleomycin, kendomycin,  
avermectin, piercidin, anthramycin, eponemycin, monensin, mupi-
rocin, arthrofactin, mycoplanecin, SW163 C, vancomycin, A-47934, 
apoptolidin and yersiniabactin are shown in Supplementary  
Tables 3 and 4. In addition to the chemistries above, which are syn-
thesized from multimodular assembly lines, GRAPE also includes 
a strategy for type II and enediyne polyketides. In these instances, 
GRAPE first removes tailorings and, because they are generated 
iteratively, it uses the entire core scaffold for matching. The GRAPE-
derived skeletons are then compared with a repository of scaffolds 
for each type that has been compiled, and a substructure search is 
done on the query compound before it is further broken down by 
GRAPE. If the scaffold is found to be in the query compound, it is 
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then labeled as that type of molecule. Analogous to the sugar exam-
ple above, a collection of genes is ascribed to each type II aromatic 
and enediyne scaffold type, and these gene sets are outputted for 
comparison with PRISM (Supplementary Table 6).

Connecting natural products to orphaned gene clusters
To link biosynthetic clusters and their products, we created a pro-
gram called GARLIC to align monomers from cluster predictions 
and small molecule breakdowns (Fig. 3a). Alignment algorithms 
are used to match other biomolecules, such as nucleic acids and pro-
teins, often with query searches through a database of subjects, and 

generally are DNA on DNA or protein on protein. For natural PK 
and NRP biomolecules, this requires an added dimension of com-
paring gene clusters (DNA) to final products (small molecules), and 
with it are several unique challenges that hinder algorithm devel-
opment. These range from degeneracy of the code (from protein 
to small molecule), inconsistent colinearity (from gene to small 
molecule) and the wider spectrum of comparable traits/monomer 
blocks (fatty acyl units, sugars, amino acids and carboxylic acids). 
In nucleic acid- and protein-based alignment, the numbers of 
monomers are relatively small, being 4 and 20 residues, respectively. 
According to our GRAPE analysis, within the PK and NRP realm 
are 20 PK monomers (five substrates, each with four possible oxida-
tion states), 47 amino acids and a collection of tailoring substrates 
(e.g., sugars) and fatty acids, to name a few. Moreover, code degen-
eracy and colinearity for PK and NRP systems leads to many error 
possibilities (differential substrates incorporated and ordering of 
incorporation), which is different from the genetic code degeneracy 
(e.g., multiple tRNA species for the same amino acid) and defined 
colinearity from DNA to RNA to protein. PKS and NRPS small 
molecule machineries are well noted for their skipping, stuttering 
and code degeneracy, leading to errors and numerous nuances in 
colinearity22,23. To better communicate the complexity of PKS and 
NRPS colinearity and the considerations necessary to relate them 
to PK and NRP small molecules, the following scenario is provided. 
For a gene cluster whose final product contains blocks denoted 
‘ABCDE’, there are a number of derivations. In one instance, ABC 
may be encoded by one gene, with the others separate, represented 
as ‘ABC-D-E’ (dashes indicate different genes). The order of ABC 
monomers may be fixed in this case as they are encoded in the same 
open reading frame (ORF), but the order of the others, D and E, can-
not be assumed, as a series of combinations are plausible: D-E-ABC, 
E-D-ABC, E-ABC-D, etc. The number of permutations increase the 
more dissociated the modules are across ORFs, all of which would 
relate to the same compound containing A, B, C, D and E blocks. 
If there are eight monomers encoded by eight separate genes, the 
number of permutations is eight factorial or 40,320.

As it is computationally prohibitive to align every possible per-
mutation, GARLIC takes a random sample of permutations using 
the Fisher-Yates shuffle24. Each permutation is scored and the top-
scoring subset is retained; each remaining permutation is used as a 
seed to create new permutations, by swapping the positions of two 
ORFs picked randomly, per permutation. This process is repeated 
several times, approaching the optimal alignment without search-
ing the entire permutation space. The final score is then determined 
by the highest-scoring alignment from the permutations. For this 
analysis, when there were six or fewer ORFs (720 permutations), 
all permutations were considered and aligned to GRAPE outputs; 
when there were more than six ORFs, the heuristic refinement 
method stated previously was used.

Multiple parameters of the alignment algorithm demand con-
sideration, given the diversity of monomers and assembly line 
alterations, as well as the difficulty translating from genes to small 
molecule blocks. In total, we developed 26 different parameters that 
could be considered and integrated them into alignment schemes 
(Supplementary Table 5). Some of this included weighting based 
on the known distribution of monomers found in NRP and PK 
molecules. Surveying the known PK and NRP chemical space via 
GRAPE revealed that 6.7% of all amino acids are non-proteino-
genic, 62.4% are proteinogenic but not aromatic, and 30.9% are  
aromatic. In PKSs, malonate is the most widely incorporated 
(70.8%), followed by methylmalonate (23.7%), leaving the more  
rare units at 5.5%. Other parameters for consideration include 
development of potential scoring based on the accuracy of PRISM 
predictions for the respective substrates and tailorings. Examples 
of these include hydroxylases, chlorinases, sulfotransferases and 
different sugar types. To match liberated sugar components from 
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Figure 3 | matching algorithm of GARLIC and examples of natural 
products matched. (a) Matching algorithm of GARlic between pRiSM 
and GRApe outputs. the genetic information used in pRiSM consists 
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compounds used in GRApe are microbial natural products from an  
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GRApe. For details of scoring configuration, see Supplementary Table 5.  
For comparison of different scoring methods, see Supplementary Figure 4. 
For full names of the abbreviations, see the Supplementary Data Set.
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GRAPE, we constructed a sugar gene repository that contains a list 
of possible genes for each sugar from GRAPE to directly match to 
PRISM’s predicted sugar genes (Supplementary Table 2). Following 
theoretical reversal of the tailoring reactions, results of the liber-
ated monomer matches are recorded and output in a format con-
sistent with PRISM gene cluster prediction outputs, facilitating 
cross-platform comparisons that correlate deconstructed molecules 
with their corresponding biosynthetic gene clusters (Fig. 3b, and 
Supplementary Tables 1 and 2).

Two types of alignment algorithms are commonly used, 
depending on the data domain and the purpose of the alignment: 
Smith-Waterman (local)25 or Needleman-Wunsch (global)26. Local 
alignments may consider only a subset of the original sequences 
to produce an optimal score, whereas global alignments are often 
deployed when one wishes to define the likeness between two 
sequences as a whole. Given the challenges of converting data from 
genome to small molecules, we created a test set with 171 diverse 
PKs and NRPs having annotated gene clusters. To conduct an  

unbiased analysis, we considered these structures and their  
respective GRAPE breakdowns with all of the other known NRP 
and PK structures from our database of 48,222 compounds.  
To assist in establishing cluster matches, we developed a relative 
scoring metric, where the final score was derived as a fraction 
between a score of a given GARLIC alignment and the score of the 
cluster matched to itself.

For each of the 171 biosynthetic gene clusters, we performed 
GARLIC scoring under various algorithm configurations against 
each of the compounds, including both compounds made by 
the gene clusters and all others from the database. We generated 
a number of criteria and through continuous empirical testing, 
developed a refined algorithm that tuned each of the given param-
eters (Supplementary Table 5). We performed this analysis on 
seven algorithm configurations, including local and global align-
ment under basic scoring schemes, and global alignment based on 
a scoring scheme that factored in the above listed distribution of 
monomers in PK and NRP products, with heightened scores for 
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rare or uncommon blocks. The algorithm and scoring configura-
tions are given in Supplementary Table 3, and results are shown 
in Supplementary Figure 4. Though the global alignment outper-
formed the local alignment with basic scoring schemes, we noted 
improvements when the scoring was refined. Particularly important  
refinements were the sugar-gene matching score, the introduction  
of partial matching for amino acids, and bonus scores for rare 
amino acids and polyketide substrates. Our refinements to the 
scoring scheme based on biological knowledge gained from previ-
ously mentioned GRAPE monomer analysis and PRISM accuracy  
measurements led to marginal improvements. Additional score 
refinements of information external to the biosynthetic assembly 
line, such as sugars and chlorinations, further increased the number 
of correct matches.

To obtain the final scoring, we optimized the parameters using 
Powell’s method27, an automated method similar to the heuristic  
empirical tuning approach used previously. For a training set, 
we excluded 4 of the 171 clusters because their close relation to 
other clusters or errors in either GRAPE or PRISM would reduce 
the applicability of GARLIC outside the training set. We scored 
the effectiveness of each set of parameters according to how well 
GARLIC ranked the correct compound for each cluster. We used 
167 clusters matched to their correct compound, and included 297 
selected decoys to represent various families of compounds, using 
our empirically refined parameters as a starting point.

Overall, the final algorithm matched 144 of the 167 (84%) clus-
ters in the top five alignments from the entire compound database. 
Those that did not match tended to have PRISM outputs that had 
predicted an incorrect substrate. The diversity of the test set’s clus-
ters, along with those that were successfully matched using the final 

scoring scheme are represented in Figure 4. Of the 144 matched 
clusters, 95% of the clusters had a final score that is higher than 
or equal to 0.33, which is 1 s.d. below the average final score (GF).  
We also determined the average final score for each compound class: 
0.70 for PK, 0.71 for NRP and 0.55 for PK-NRP. Our program works 
on type II aromatic PK and enediynes as well, with the matches rep-
resented in Supplementary Figure 5.

To validate the algorithm and ensure the results were not due to 
overfitting to each cluster, we performed a leave-one-out analysis.  
We derived new parameter scoring systems from the Powell method 
by removing each cluster in turn from the training set, generating 167 
scoring schemes in all. To eliminate potential bias, we started each 
optimization from the original basic scoring scheme, as opposed to 
the empirically derived one. Even though starting from the latter 
scoring yielded better results, we developed it using the 167 clus-
ters and thus could not use it for this analysis. When we tested each 
cluster against the scoring scheme learned in its absence against the 
database of compounds, 110 of the 167 gene clusters (66%) correctly 
matched by highest score to its associated compound, and 125 (75%) 
matched in the top five. As the leave-one-out analysis performed 
similarly to our final algorithm, and as our training set was diverse 
(Fig. 4), we would expect GARLIC to exhibit comparable accuracy 
on any supplied biosynthetic gene cluster.

matching clusters to known and new natural products
To build a comprehensive collection of bacterial NRP and PK bio-
synthetic gene clusters, we developed a script to extract and pro-
file microbial genomes (both from NCBI and our internal library) 
using PRISM. We analyzed over 300,000 sequences with a length of  
>100 kilobases (kb), leading to the identification of 16,831 potentially  
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completely assembled PKS and NRPS clusters. We defined  
complete clusters as those possessing at least four modules and hav-
ing 20 kb flanking both ends of the cluster (1,018 PK, 6,351 NRP 
and 9,462 hybrid PK-NRP gene clusters). To assess which gene 
clusters corresponded to known compounds, we ran PRISM results 
through GARLIC and obtained final matching scores for known 
products. Included in these results was a series of dereplicated gene 
clusters that were previously related to natural products, including 
accurate matches for telomycin28 (final score: 0.72; second highest 
score: 0.49), acidobactin9 (final score: 0.61; second highest score: 
0.24), thanamycin9,29 (final score: 0.68; second highest score: 0.56) 
and potensimicin9 (final score: 0.77; second highest score: 0.73),  
further extending beyond the 144 listed above (Supplementary 
Figs. 7–10). Other candidate gene clusters to compound matches 
were revealed that had not previously been identified from this 
metagenomic data set (Fig. 5). Using the final score averages to the 
true positive matches as a guide (see above), we focused on com-
pounds that were above these scores as representative candidates 
from each class: PK, PK-NRP and NRP. Moreover, we did not use 
strains previously documented in the literature to produce a given 
molecule. We cultivated the strains in the laboratory and processed 
them to generate crude extracts. For all cases we properly identified 
the prospective candidate, and assigned Streptomyces achromogenes  
NRRL 3125 as a producer of the PK lucensomycin (final score:  
0.78; second highest score: 0.77)30, Amycolatopsis sp. NAM 50 as 
a producer of the PK-NRP octacosamicin (final score: 0.60; sec-
ond highest score: 0.49)31, Brevibacillus laterosporus DSM 25 as a  
producer of the NRP bogorol (final score: 0.78; second highest 
score: 0.25)32 and tauramamide33 (Supplementary Figs. 11–14, 
respectively; Supplementary Note). Additional evidence for 
cluster matching is provided in Supplementary Figure 15 and 
Supplementary Table 7.

As 95% of known compounds matched to known clusters in 
our test set with a final score of 0.33 or higher (see above), we can 
hypothesize that any full clusters with the top match score lower 
than 0.33 are likely to code for novel compounds. Among the 16,831 
full clusters, 2,532 (15%) had scores < 0.33, suggesting they code for 
novel products. As an initial demonstration, we selected a cluster 
from the potensimicin producer Nocardiopsis potens DSM 45234 
(ref. 9) that had a low match score (0.27) to all known compounds. 
Using metabolomic profiling through the genome to natural prod-
ucts platform (GNP)9, we identified the orphan metabolite based 
in part on its prediction (Supplementary Fig. 16). We structur-
ally characterized the isolated product, determined that it was a 
new natural product, and named it potensibactin (Supplementary  
Fig. 16 and Supplementary Note). Loading the potensibactin 
structure into the identified natural-product database and re- 
running GARLIC validated this product as a match for the  
deorphaned cluster (final score of 0.58).

DISCUSSIoN
Since the dawn of the ‘golden age of antibiotics’, much effort has 
been taken to collect and solve the structures of microbial natural 
small molecules. Success in these efforts is illustrated by the vast 
caches of products isolated and the activities of numerous agents 
that have been determined and are currently used in medical and 
biotechnological applications. Genomics is a more recent addition 
to the natural-product workflow, and is assisting with how we define 
microorganisms with biosynthetic potential and the overall distri-
bution of PK and NRP clusters in microbial genomes. Reconciling 
the rapidly expanding amount of genomic data with natural-prod-
uct chemistry is now a requirement in order to define the next fron-
tiers for pursuing natural small molecules. Further, the sequenced 
genomes that we currently have are biased toward the “classical” 
producers of bacterial natural products (actinomycetes) and patho-
genic bacteria (Escherichia coli and Pseudomonas spp.), which is 

not the true representation of the genomic spaces. Therefore, the 
potential for novel cluster discovery would be much higher if we 
have more diversity in the sequenced genomes. Merging such tools 
with other developments in comparative metabolomics should now 
make it achievable to construct targeted libraries of strictly new 
microbial natural products, bypassing the challenges of dereplica-
tion in bioactivity-guided fractionation.

Here we present the unified tools of gene cluster prediction 
(PRISM), known natural-product retro-biosynthesis (GRAPE) and 
alignment processes (GARLIC) that work as a pipeline to define 
new clusters and those for known compounds. GRAPE has limita-
tions with regard to a number of post-assembly line modifications, 
such as carbon deletions via Favorskii rearrangements, cyclization 
through Diels-Alder reactions and decarboxylation of the terminal 
carboxylic acid. There are also issues when a single fragment con-
tains multiple carboxylic acids once polyketide prediction begins, as 
it is currently not possible to know for certain which carboxylic acid 
defines the end of the polyketide extension. As more information  
becomes available for the different reaction types, however, 
additional logic will be added to GRAPE’s process. A central 
reasoning for developing the GARLIC platform and creating the retro- 
biosynthetic analysis was to define assembly lines that code for 
new PK or NRP molecules. The development of a scoring metric  
for the system enabled us to also define examples of assembly 
lines that have a high likelihood for encoding new molecules. The 
GARLIC algorithm is free for public use (accessible via http://www.
magarveylab.ca/garlic), which allows for the comparison of clusters 
to small molecules through the upload of PRISM results or through 
manual input of scaffold and tailoring information obtained from 
other sources. The new clusters and their encoded products may be 
the next step for medicine to develop effective new agents, particu-
larly in this current era of antibiotic resistance. 
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oNLINE mETHoDS
PRISM analysis. We recently described PRISM, a Java web application designed 
to identify biosynthetic gene clusters in microbial genomes and predict the 
structures of genetically encoded secondary metabolites14. PRISM leverages 
a library of 498 HMMs to identify biosynthetic domains for modular, trans-
acyltransferase, enediyne, and iterative type I polyketides, type II polyketides 
and nonribosomal peptides. Biosynthetic domains are grouped into gene 
clusters, and monomer units are predicted by analyzing identified adenyla-
tion, acyl-adenylating and acyltransferase domains with libraries of 66, 26 and  
15 substrate-specific profile HMMs, respectively. To minimize false posi-
tives, a subset of rare monomers require the concurrent identification of one 
or more prerequisite domains in order to be conclusively identified, including  
methoxymalonate (3-hydroxyacyl-CoA dehydrogenase and acyl-CoA dehydro-
genase), diaminopropionate (diaminopropionate synthase), capreomycidine 
(L-arginine hydroxylase and capreomycidine synthase), 3-hydroxypipecolic 
acid (cyclodeaminase and pipecolic acid hydroxylase), and 3-hydroxyan-
thranilic acid (tryptophan dioxygenase and aryl formamidase). A library of 54 
tailoring reaction domains is implemented to account for the diverse set of 
enzymatic reactions that tailor the nascent natural product scaffold, includ-
ing: C- and O-glycosylation, O-, N- and C-methylation, heterocyclization,  
macrocyclization, aromatization, oxidation/reduction, mono- and dioxygena-
tion, Baeyer-Villiger rearrangement, halogenation, carbamoylation, sulfonation,  
amination and acyl group transfer. PRISM uses identified biosynthetic infor-
mation to generate a combinatorial library of natural product structures that 
could putatively be produced by the biosynthetic gene cluster. This combinato-
rial scaffold library is not used to compare GRAPE and PRISM data via the 
GARLIC alignment algorithm, however; instead, monomer units and tailoring 
reactions identified by retro-biosynthesis or genomic prediction are aligned, 
while a series of substructure searches are performed to identify conserved bio-
synthetic scaffolds (e.g., in enediynes and type II polyketides; Supplementary 
Table 6), and subunits with variable sites of attachment (e.g., deoxysugars and 
acyl units; Supplementary Table 2).

GRAPE analysis. GRAPE was designed for the prediction of natural prod-
uct bio-assembly based on chemical structure (Fig. 2). GRAPE was devel-
oped in the Java programming language using libraries from the Chemistry 
Development Kit20, and the Maximum Common Subgraph (MCS) algorithm 
from the Small Molecule Subgraph Detector toolkit (SMSD)21. Given chemical 
structures as input in SMILES format19, GRAPE performs matching against 
a database of scaffolds and then reverse biosynthetic chemical reactions.  
Each compound is first compared against scaffolds for nonmodular polyketides, 
enedyines and terpenes. This comparison checks whether any of these scaf-
folds are a substructure of the compound for initial classification. By rapidly  
annotating large chemical structural databases, with a focus on NRP and 
PK assembly units, GRAPE performs a collection of chemical reactions in  
reverse for each chemical structure, storing relevant biosynthetic informa-
tion at each step (Supplementary Tables 3 and 4, and Supplementary Fig. 1).  
The output from GRAPE consists of two components: an ordered list of mono-
meric units that correspond to an NRPS or PKS assembly line, and a list of 
chemical features that correspond to non-assembly line biosynthetic enzymes 
(Supplementary Table 1).

The reverse biosynthetic chemical reactions fall under four major steps  
(Fig. 2 and Supplementary Fig. 1). First, macrocycle-forming chemical 
bridges are reversed, such as disulfide bonds and ether linkages between aro-
matic rings. Second, reactions forming heterocyclic structures, such as thia-
zoles, oxazoles, penams and penems are performed in reverse. In the case of 
thiazoles and oxazoles, the atoms involved are tracked to output the predicted 
presence of a cyclization domain in the biosynthetic assembly line. In the case 
of penams and penems, the presence of these structures is stored for prediction 
of synthetic enzymes in the biosynthetic gene cluster. Rare chemistries, such 
as those found in kendomycin, avermectin and piericidin as well as di-cystine 
linkages, are scanned by substructure matching, and then their structures 
are reversed to pre-tailoring state. Third, core linking bonds, such as peptide 
bonds, thioesters and ester linkages, are reversed, and the connectivity and 
direction of peptide bonds are stored for the purpose of preserving order 
in the final output. If there is no ester bond in a cyclic molecule, then the  

starting monomer for biosynthetic alignments is considered unknown; oth-
erwise the monomer with a N after the ester cleavage is considered the start. 
Fourth, additional added groups, such as sugars, sulfate groups, N and O methyl-
ations, and chlorines are detected, and their synthesis reactions are reversed.

After the reversals of these chemical reactions, the resulting monomeric 
chemical structures are identified as amino acids, fatty acids, sugars or 
polyketides. A list of known amino acids, hydroxy acids, fatty acids and sugars 
was curated, including substructures found in a PK and NRP products, and 
used to identify each monomeric structure. For structures with a hexose ring 
per the reverse biosynthetic analysis, these are identified as sugars, whereas 
remaining structures are compared to the curated list of sugar structures and 
identified if the maximum common substructure Tanimoto score from the 
MCS21 is greater than a cutoff of 0.8. Structures still unclassified are compared 
to every known amino acid structure using the MCS and identified if the maxi-
mum common substructure Tanimoto score from the MCS is greater than a 
cutoff of 0.9. After this, any structures still unidentified are analyzed to deter-
mine if they are a potential polyketide or fatty acid. To this end, the remaining 
fragment is checked for a carboxylic acid, which is considered the biosynthetic 
end of a polyketide or fatty acid. Once the carboxylic acid carbon is determined, 
the longest carbon-only chain is determined. GRAPE then finds the shortest 
chain, with any atoms, between the start and end. The logic behind this is that 
all atoms that are not carbon (generally oxygen) or the bonds that create rings 
after the initial biosynthesis of the polyketide are made on this shortest path. By 
then checking along this path for any discrepancies between the carbon-only 
chain and the shortest chain where the ring is opened to be consistent with 
biosynthesis becomes clear. If there are multiple carboxylic acids, the one with 
the longest carbon-only chain is considered the biosynthetic end.

The program tracks from the newly found start C and checks that it is on 
a β carbon, or where the ketone is originally. This is done by ensuring that 
there is an odd number of carbons on the carbon-only chain; if the number is 
even, then the next closest carbon is chosen. GRAPE determines the state of 
the connected oxygen: ketone or hydroxyl. If no oxygen is present, it checks to 
see whether the carbon has a single or double bond. This information gives the 
putative domains for this single unit. If an epoxide is detected, as in mupirocin, 
it is removed and a double bond is left in its place, and this epoxide removal is 
recorded by the program (Supplementary Table 3). GRAPE also checks the 
chemical environment around each β carbon to determine whether there is 
an unusual cyclization event, such as those for avermectin, and reverses the 
chemistries (Supplementary Table 3). The α carbon is also checked for con-
nected atoms to predict which initial substrate is being incorporated into the 
molecule. The program counts two carbons at a time on the backbone until 
it reaches the end. Specific chemistries are performed when the carbon in 
the backbone is determined to be in a ring structure. In monensin, for exam-
ple, there are several rings with an oxygen that make up the entire molecule 
(Supplementary Table 3). As the program traverses the backbone, it opens 
these rings and attaches the appropriate atoms depending on which of the 
carbons is a beta carbon if there is an even number of carbons in the ring.  
If there is an odd number of a carbon in the ring, it is not possible to tell which 
carbon had the hydroxyl group and which had the ketone, so both are inserted 
as potential states at that site.

Owing to the chemical similarity of some fatty acids and polyketides, it is 
not always possible to infer from structure alone whether these structures are 
synthesized by a hybrid PK-NRP assembly line or through modifications to a 
fatty acid. To address this, structures are identified as fatty acids only if they 
contain clear identifying features, such as the presence of a saturated carbon 
chain and the carboxylic acid end of a saturated or 3-hydroxy fatty acid. Other 
structures from amino-acid-containing natural products are annotated as pos-
sible fatty acids and possible polyketides; this is assigned a separate score 
in the GARLIC scoring scheme (Supplementary Table 5). Structures with a 
carboxylic acid end and a carbon chain are processed as polyketides and identi-
fied unit by unit. Through the reverse biosynthesis steps, the lactone bonds 
in macrocyclic polyketides are reversed, resulting in linearized polyketide 
structures which are processed in this step.

Some compounds, such as lipomycin and jamaicamide, contain amino 
acids that have been decarboxylated and elongated through polyketide bio-
synthetic machinery. The reaction mechanism for these structures is reversed, 
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leaving identified amino acid and polyketide components (Supplementary 
Fig. 3). Remaining structures are run through chemical checks to identify 
whether they resemble polyketides (Supplementary Fig. 2); for these chemical  
fragments, GRAPE identifies the main polyketide carbon backbone by first 
predicting where the biosynthetic end is located (often a carboxylic group), 
then the start carbon, and then analyzes the structure in a stepwise manner to 
identify each oxidation state and substrate.

GARLIC scoring logic. To correlate the output of GRAPE with that of PRISM, 
we developed GARLIC, which is an algorithm that assigns a match score 
between GRAPE and PRISM output. PRISM and GRAPE each output two 
major components: an ordered sequence of monomeric units corresponding to 
assembly line modules and a list of enzymes or chemical modifications that are 
external to the biosynthetic assembly line. GARLIC computes a similarity score 
between GRAPE and PRISM output using a global alignment created with the 
Needleman and Wunsch algorithm26. Each site of the alignment is scored for 
matches, mismatches, tailoring events and gaps dictated by a customizable 
scoring logic. As biosynthetic gene clusters may consist of assembly line PKS 
and NRPS encoded on multiple open reading frames, GARLIC initially identi-
fies all permutations and returns the score corresponding to the best-matching 
permutation. If there are too many permutations to search all space in a reason-
able time, a random sample is taken, and the top scoring alignments are taken 
and reordered. This is repeated several times to narrow down the true align-
ment while searching a fraction of the permutable space. Biosynthetic features 
external to the assembly-line sequence (Supplementary Table 1) are matched 
between PRISM and GRAPE outputs, and added to the score. Tailorings, such 
as sulfonations and halogenations, recognized from GRAPE are matched to 
the tailoring enzymes predicted by PRISM. Sugar additions identified from 
GRPAE are matched by combinatoralizing the potential glycosylation enzymes 
predicted in PRISM as a different combination of enzymes will create a differ-
ent sugar structure, or grouping the enzymes differently will yield a different 
set of sugar predictions (Supplementary Table 2). The identified molecule can 
then be matched to PRISM results, as PRISM also predicts the type of mol-
ecule based on known genes responsible for that scaffold. Adding scores in this 
manner are particularly important for type 2 polyketides and enedyines, whose 
scaffolds are not broken down by GRAPE to yield monomers.

Given PRISM sequence P = (p1, p2,…, pn) and GRAPE sequence G = (g1, g2,…, 
gm), an alignment of P and Q can be described as the aligned sequences 

P p p p

G g g g
R

R

* * * *

* * * *

( , ,..., )

( , ,..., )

=

=
1 2

1 2

Where each of pi
*  and gi

*  may be a monomer unit or a gap, and P and G are 
subsequences of P*  and G* , respectively.

Each aligned sequence pair (P* , G* ) is assigned a score S(P* , G* ), where 
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R
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=
∑
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for a scoring function s p gi i( , )* *  that is defined by match scores, gap penalties,  
and substitution penalties (Supplementary Table 5).

For a given P and G , let A be the set of all possible aligned pairs ( P* , G* ). 
The optimal global alignment score between the sequence pair (P, G) is 

rawScore P G S P G
P G A

( , ) max { ( , )}
( * , * )

* *=
∈

We implemented the Needleman-Wunsch algorithm26 (Fig. 3), which identifies 
the optimal global alignment using dynamic programming in time complexity 
O(|P||G|). Scaling is performed by the length of the PRISM sequence in order 
to normalize the effect of large sequences. Information about the cluster and 
compound external to the alignments (for example, addition of sugars and 
tailored modifications) are then considered and scored. For external feature 
sets EP and EG from PRISM and GRAPE respectively, we added a bonus score 
to the concordant prediction of each feature, leading to the final score. 

scaledScore P G
rawScore P G

P
s E EE P G( , )

( , )
| |

(| |)= + ∩

For score function sE, which adds a score for each external feature 
(Supplementary Table 5), a normalization step to self-alignments is performed  
to produce the final score: 

finalScore P G
scaledScore P G

scaledScore P P scale
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=
), ddScore G G( , )}

We assessed the impact of various substitution and gap penalties, as well as 
the Smith-Waterman algorithm25 for local alignment.

GARLIC scoring and algorithm comparison. We sought to address the impact 
of local and global alignment, as well as the scoring scheme, on the ability 
of GARLIC to identify a matching compound out of a database of >40,000 
small molecules on which GRAPE analysis was performed. Additionally, we  
compiled a list of 171 biosynthetic gene clusters with known products, and 
ran them through PRISM. For each of the 171 biosynthetic gene clusters, we 
performed GARLIC under various algorithm configurations against each of 
the >40,000 compounds, and ranked the compounds by score. We performed 
this analysis on several algorithm configurations, including local and global 
alignment under a basic scoring scheme, ‘refined’ scoring based on biological  
prior knowledge, and the final optimized score (GF). The algorithm and  
scoring configurations are given in Supplementary Table 5.

A ‘leave-one-out’ analysis was performed, using the Scientific Python 
software library34, to validate GARLIC and the methods used to obtain the 
parameter scores. For each cluster to be left out, we used a different training 
set, which consists of the 166 other clusters matched to their compounds and 
297 decoy compounds, including the compound associated with the left-
out cluster. The cluster-associated compound was left in order to mimic the 
most likely scenario for GARLIC use: testing a new biosynthetic gene clus-
ter against a large existing compound database. Performance was measured 
using a rank-based metric: the sum of the inverse of the rank of the true hit 
for each cluster as ranked by GARLIC score against the 463 compounds. 
We used Powell’s method27 to optimize parameters against this metric for 
each subset of 166 clusters. In each case, once local optimum was reached 
and a scoring scheme obtained, the scheme was used to test the left out gene 
cluster against the full set of GRAPE compounds. We used the basic scoring 
scheme to start the parameter optimization to avoid potential pre-fitting. 
We chose Powell’s method because it was similar to the empirical method 
used to derive the refined scores and was able to obtain local optima some 
distance from the start.

Code availability. GRAPE and GARLIC code is available at https://github.com/
magarveylab/grape-release and https://github.com/magarveylab/garlic-release.

NMR and mass spectrometry. 1D (1H and 13C) and 2D (1H-13C HMBC, HSQC, 
HSQC-TOCSY, and 1H-1H NOESY, TOCSY, and COSY) nuclear magnetic  
resonance (NMR) spectra for lucensomycin and potensibactin were recorded 
on a Bruker AVIII 700 MHz NMR spectrometer in d6-DMSO (Sigma-Aldrich). 
High-resolution MS spectra were collected on a Thermo LTQ OrbiTrap XL 
mass spectrometer (ThermoFisher Scientific) with an electrospray ionization 
(ESI) source. For analytical and preparatory separations, LC-MS was used, 
employing a Bruker AmazonX ion trap mass spectrometer coupled with a 
Dionex UltiMate 3000 HPLC system, using a Luna C18 column (150 mm × 
4.6 mm, or 250 mm × 15 mm, Phenomenex), running acetonitrile with 0.1% 
formic acid and ddH2O with 0.1% formic acid as the mobile phase.

Microbial strains. Brevibacillus laterosporus (DSM 25) and Nocardiopsis potens 
(DSM 45234) were obtained from the German Resource Centre for Biological 
Material (DSMZ) and maintained on LB agar and Bennet’s agar, respectively. 
Environmental isolate NAM50 was recovered from soil samples collected from 
McMaster University in 2010 and maintained on Bennet’s agar. Streptomyces 
achromogenes was obtained from the Northern Regional Research Lab (NRRL; 
no. 3125) and was maintained on Bennet’s agar.

Production of natural products. All bacteria were initially grown for 3 d at 
30 °C, then inoculated into fresh medium and grown for 3 d at 30 °C before 

https://github.com/magarveylab/grape-release
https://github.com/magarveylab/grape-release
https://github.com/magarveylab/garlic-release
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with methanol as a mobile phase. Fractions containing potensibactin were 
pooled, evaporated to dryness, and resuspended in methanol. Potensibactin 
was isolated by preparative scale LC-MS using a Luna 5 μm C18 column 
(Phenomenex, 250 × 15 mm) with water (0.1% formic acid) and acetonitrile 
(0.1% formic acid) as the mobile phase, at a flow rate of 10 mL/min. After 3 
min, acetonitrile was increased in a linear manner (curve 5) from 5% to 10% 
at 5 min, then increased to 27.5% by 22 min, followed by a wash of 100% 
acetonitrile. Potensibactin eluted at 14 min.

Genome sequencing. A single colony of B. laterosporus was grown in  
3 mL LB overnight at 30 °C with shaking at 250 r.p.m. Genomic DNA was 
harvested using a GenElute Bacterial Genomic DNA Kit (Sigma). A single 
colony of S. achromogenes and NAM50 were used to inoculate 50 mL cul-
tures of GYM media containing 0.5% glycine and grown for 96 h at 30 °C 
and 250 r.p.m. 500 μL of culture was centrifuged at 12,000g for 5 min and 
resuspended in 500 μL SET buffer (75 mM NaCl, 25 mM EDTA pH 8.0,  
20 mM Tris HCl pH 7.5, 2 mg/mL lysozyme) to lyse for 2 h at 37 °C. 
Proteinase K and SDS were added after lysis to final concentrations of  
0.5 mg/mL and 1%, respectively. The lysis mixture was incubated at 55 °C for 
2 h before adjusting the concentration of NaCl to 1.25 M and extracting twice 
with phenol-chloroform. Isopropanol was added (equivalent to 60% the vol-
ume of the solution) to precipitate genomic DNA, followed by two washes 
with 70% ethanol and drying of the DNA, before resuspension in nuclease-
free dH2O. Genomic DNA was sequenced at the Farncombe Metagenomics 
Facility (McMaster University), using an Illumina HiSeq DNA sequencer. 
Contigs were assembled using the ABySS genome assembly program and 
Geneious bioinformatic software.

cultures were centrifuged to remove cells, extracting the supernatant with 2% 
HP-20 resin, and eluting the resin with excess methanol. To produce octa-
cosamicin, NAM50 was initially cultured in KE medium, followed by Bennet’s 
medium. To produce bogorol and tauramamide, B. laterosporus was cultured 
in LB medium.

To produce lucensomycin, S. achromogenes was initially cultured in KE 
medium, followed by aricidin production medium (AriP). For preparative iso-
lation of lucensomycin, 12 L of AriP S. achromogenes culture was harvested by 
centrifugation at 7,000 r.p.m., followed by methanol extraction of the cell pel-
let, and Diaion HP-20 (20 g/L) extraction of the supernatant. Methanol eluent 
of the HP-20 resin was pooled with the methanol extract of the cell pellet and 
dried under rotary vacuum. This extract was dissolved and extracted with a 1:1 
mixture of butanol and water. The butanol fraction was isolated, evaporated 
to dryness, resuspended in a minimal volume of methanol, and applied to an 
open gravity column of LH-20 size-exclusion resin (Sephadex) with methanol 
as a mobile phase. Fractions containing lucensomycin were pooled, evaporated 
to dryness and resuspended in methanol. Lucensomycin was isolated by pre-
parative scale LC-MS using a Luna 5 μm C18 column (Phenomenex, 250 mm 
× 15 mm) with water (0.1% formic acid) and acetonitrile (0.1% formic acid) 
as the mobile phase, at a flow rate of 10 mL/min. After 4 min, acetonitrile was 
increased in a linear manner (curve 5) from 5% to 27% at 10 min, held until 
16 min, and then increased to 41% by 40 min, followed by a wash of 100% 
acetonitrile. Lucensomycin eluted at 27 min.

To produce potensibactin, N. potens was initially cultured in KE medium, 
followed by Bennet’s medium. For preparative isolation of potensibactin, 12 L  
of Bennet’s medium N. potens culture was harvested by centrifugation at 7,000 
r.p.m., followed by methanol extraction of the cell pellet, and Diaion HP-20 
(20 g/L) extraction of the supernatant. Methanol eluent of the HP-20 resin 
was pooled with the methanol extract of the cell pellet and dried under rotary 
vacuum. The sample was resuspended in a minimal volume of methanol, and 
applied to an open gravity column of LH-20 size exclusion resin (Sephadex) 

34. Jones, E., Oliphant, T. & Peterson, P. SciPy: Open Source Scientific Tools for 
Python. (2014).
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